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Synchronization and coherence in thermodynamic coupled map lattices
with intermediate-range coupling

Prashant M. Gade* and Chin-Kun Hu†

Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
~Received 23 February 1999!

In spatially extended systems, intermediate-range interactions arise naturally in some physical contexts. To
study them, we investigate a model of coupled map lattices~CML’s! with intermediate-range coupling, and
derive analytic conditions for its synchronization. We find that in these CML’s, if the range of coupling is
fixed, the law of large numbers applies for the mean field. The total normalized power in nonzero components
of the power spectrum of the mean field goes to zero in the thermodynamic limit. We also show that in the
same limit the relevant parameter for synchronization and coherence is the fraction of sites coupled, and not
their number.@S1063-651X~99!07410-3#

PACS number~s!: 05.45.2a
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The past decade has seen a surge of interest in sync
nization and coherence in coupled map lattices~CML’s!
@1–10#. Most work has focused on systems with finite d
grees of freedom and short-range, global or random c
pling. In this paper, we study the synchronization of one- a
two-dimensional~1D and 2D! CML’s with intermediate-
range couplings in the thermodynamic limit. This study
related to systems with finite degrees of freedom studied
Sinhaet al. @2# and Kozma@10#. In these works, each site i
coupled to a range of neighbors on either side, rather t
just its nearest neighbors. This may be a valid approxima
in systems where interaction strength decays slowly with
tance. Just as CML’s with nearest neighbor coupling co
be considered to be a discretization of partial differen
equation, CML’s with intermediate-range coupling could
seen as a discretization of a partial integro-differential eq
tion. In fact, such integro-differential equations have oft
been used in modeling certain physico-chemical reacti
@11#. Elimination of rapidly diffusing components in a sy
tem of diffusion coupling can also lead to effectively nonl
cal coupling in resultant equations@12#. CML’s in which
coupling between two sites separated by distancer decays as
power law 1/r a with exponenta have also been considere
as models for biological neural networks@6#. In the present
work, we derive the analytic conditions for synchronizati
in our CML’s. We find that in the thermodynamic limit th
relevant parameter for synchronization is thefraction of sites
coupled and not their number. We present numerical res
which show that for the mean field in the CML’s with a fixe
range of coupling sites for each site, the law of large nu
bers applies and the total normalized power in nonzero c
ponents of the power spectrum goes to zero in the ther
dynamic limit. This is in sharp contrast with the conjectu
of Sinhaet al. @2#.

Sinhaet al. showed that some curious properties eme
in the spatiotemporal dynamics as one increases the ran
coupling in a 1D system@2#. In the usual definition of
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CML’s, one couples each site to its nearest neighbors o
Here the coupling is over a finite range, sayB neighbors on
either side on a lattice ofN sites. Sinhaet al. @2# claimed that
the relevant parameter is the number of sites coupled,B, and
not the fraction of sites coupled,B/N. This conjecture was
reached on the basis of the observation that power spe
saturate as a function ofB and notB/N. However,B being a
relevant parameter as suggested by Sinhaet al. @2# is coun-
terintuitive. The intuitive expectation would be that if th
system size goes to infinity while the coupling range rema
constant, we should obtain results similar to nearest-neigh
coupling at least in one dimension. We show that this exp
tation is correct and that certain properties which universa
emerge in global coupling schemes are absent in this c
@8#. The analysis presented by Lemaitreet al. @13# also sup-
ports our claim. Lemaitreet al. showed that coherence ca
emerge with short-range coupling in dimensiond>2 but not
for d51 ~see also@14#!.

Recently, Kozma@10# numerically studied synchroniza
tion in these CML’s, and calculated phase diagrams a
function of B and strength of coupling for two different va
ues ofN. These phase diagrams show striking similarity
the parameter used isB/N. In this work, we explicitly prove
that at least as far as synchronization is concerned, the
evant parameter is in factB/N and notB. Going to larger
lattice sizes, we show that the quasiperiodic behavior t
emerges almost universally in globally coupled systems
absent and the law of large numbers applies@1#. We also
show that the power spectrum of mean field tends to ad
function with the peak at zero momentum in the thermod
namic limit. Thus the structure seen by Sinhaet al. disap-
pears in this limit.

Let us first consider a linear lattice ofN sites with peri-
odic boundary conditions. We assign a real variablexi(t) at
each sitei , i 51, . . . ,N. Let B5N/k be the number of
neighbors on either side for each site. Each site evolve
follows:

xi~ t11!5~2B!21(
j 51

B

@ f „xi 1 j~ t !…1 f „xi 2 j~ t !…#. ~1!

The Jacobian of the above system at any time has elem
4966 © 1999 The American Physical Society
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j m,l(t)5(2B)21f 8„xl(t)… if ~a! 0,um2 l u<B, or ~b! um
1N2 l u<B,m<B, or ~c! uN2m1 l u<B,m.N2B; the
other elements are zero. We assume thatN.2B11 to avoid
complications. It is clear that synchronized state, i.e.,
state in whichxi(t)5x(t); i for all times t, is a solution of
the system. The reason is that if one starts in a synchron
state, the system stays synchronized. Let us check the s
ity of this state. In this state the Jacobian matrix is related
the interaction matrix byj (t)5I f 8„x(t)…, where I is an
N-dimensional interaction matrix with elements such th
I m,l51/(2B) if conditions ~a!, ~b!, or ~c! defined above are
satisfied; the other elements are zero. The long term Jaco
for the synchronized state is given byJt5 j (t)••• j (2) j (1)
5I t f 8(xt)••• f 8(x2) f 8(x1). Thus the stability of this state
depends on the eigenvalues of the interaction matrix and
Lyapunov exponent of the mapf. Let l i , i 50, . . . ,N21
denoteN eigenvalues ofI andl be the Lyapunov exponen
of the mapf. In order to find the eigenspectrum of the inte
action matrixI, the symmetries are helpful. The interactio
matrix is a circulant matrix@3,15#. The Fourier modes are th
eigenmodes of the interaction matrix. Thus the stability
any synchronized state can be analyzed by expanding pe
bations in terms of Fourier modes. We will analyze synch
nous chaotic state which is widely observed in these syst
@10#. The only eigenmode which corresponds to the unifo
state is one forq50, i.e.,@1,1, . . . ,1#. It is easy to show tha
the condition for the stability for synchronous chaos is t
only this eigenmode should survive and the rest should
damped@4,5#. Let l0 be the eigenvalue corresponding to th
eigenmode withq50 andl be the Lyapunov exponent o
the mapf. The necessary condition for synchronous chao
that only one eigenvalueul0elu.1, with ul ie

lu,1 for i
51, . . . ,N21 @16#.

Let us compute the eigenvalues of interaction matrix. U
ing the symmetries of interaction matrix, we find

l l5B21(
j 51

B

cos~2 j l p/N!, ~2!

where l 50, . . . ,N21. Thus l051 and l l,l0 for lÞ0.
The identityS j 50

B cos(ju)51
2@11sin„(B1 1

2 …u)/sin(u/2)# im-
plies that l l51/B@1/21sin„2p(B1 1

2 ) l /N…/2 sin(pl/N)#
2(1/B), for l>1. Thel l ’s are continuous functions ofl, and
l1 can be arbitrarily close tol0. Let us determine the bound
of stability in terms ofl1 alone. For largeN, „sin(p/N)
'p/N… and forB@ 1

2 we obtain

l1;
sin~2p/k!

2p/k
. ~3!

Thus the eigenvaluel1 is distinct froml051, and this gap
in the spectrum can be used to establish synchronization
constantk even whenN→`. ~The bounds forl l ’s for l>1
can be found, and it can be shown thatl1 remains the value
with largest modulus for anyk.2.! In other words, it is
possible to find the function with the Lyapunov exponentl,
such thatel.1 but ul1elu,1 for some value ofk. However,
the situation changes qualitatively ifB, number of neighbors
at each site, remains constant as considered by Sinhaet al.
@2#. In this case, asN→`, k→`, 2p/k→0, andl1→1.
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This implies that synchronous chaos is not possible in
thermodynamic limit. Thus, in the thermodynamic limit, th
system behaves like a nearest-neighbor coupled system.
is what one would intuitively expect. Let us take anoth
extreme case, that of global couplingB5N/2 (k52). One
should always see a synchronized state in this case. It is
to find the range ofel,Z of a single map in which synchro
nized chaos will be observed. Fork55/2, Z54.27 . . . ; for
k53, Z52.418 . . . ; and for k56, Z51.20 . . . . The
stability range approaches unity for largek. In Fig. 1, we
show the dependence ofZ on k. We have verified these re
sults in numerical simulations.

Let us consider a case with on-site contribution alo
with B nearest neighbors, i.e.,

xi~ t11!5~12e! f „xi~ t !…

1~e/2B!(
j 51

B

@ f „xi 1 j~ t !…1 f „xi 2 j~ t !…#. ~4!

The stability analysis can be done on similar lines. The
genvalues change asl i→(12e)1el i . However, the be-
havior in the thermodynamic limit does not change.

These conclusions for synchronization remain unchan
even if one considers higher dimensional CML’s wi
intermediate-range interactions. Let us consider the evolu
of a 2-dL3L lattice of N sites with periodic boundary con
ditions, whereN5L2:

xi , j~ t11!5~4B!21(
k51

B

@ f „xi 1k, j~ t !…1 f „xi 2k, j~ t !…

1 f „xi , j 1k~ t !…1 f „xi , j 2k~ t !…#.

The interaction matrix of this system is a block-circula
matrix with circulant blocks. Using Ref.@3#, we find that the
L2 eigenvalues are

l l ,m5~2B!21(
j 51

B

„cos~2 j l p/L !1cos~2 jmp/L !…,

where l 50, . . . ,L21, and m50, . . . ,L21. Thus l0,051
and l l ,m,l0,0 for nonzerol and m. The crucial factor in
synchronization is how closel0,0 is to l0,15l1,0. Using ar-
guments as in the 1D case, one can show thatl1,0;1/2@1
1sin(2p/k)/(2p/k)#. As in the 1D case, synchronization

FIG. 1. This figure shows the behavior of the maximum allow
value ofZ5el as a function of fractionk of sites coupled.
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impossible for constantB in the thermodynamic limit. The
synchronization condition remains the same.

Thus it is clear that synchronization cannot emerge w
short interactions on Euclidean lattices in general. Howe
one can still ask if some other kind of collective behavior c
develop. Sinhaet al. @2# concluded that coupling with a
range larger than some critical length is similar to glob
coupling, as a result of their numerical simulations. Using
extra array of partial sums, we can simulate much lar
lattices. We show that~a! unlike the case of globally couple
maps, the law of large numbers is applicable, and~b! the
power spectrum of the mean field does not have any part
lar structure in the thermodynamic limit.

In CML’s with global coupling it was found that the fluc
tuations in the mean field do not decay as 1/N even though
all of the Lyapunov exponents were found to be positive a
there was no apparent order in the power spectrum@1#. It was
found that the fluctuations as defined below saturate, si
fying subtle collective behavior. In particular, if one defin
the mean field ash(t)5N21S i 51

N f „xi(t)… then its standard
deviation s25(^h2&)2(^h&2) would decay as 1/N if the
f „x( i )…’s were independent random numbers. Of course,
sites in CML’s are not independent. However, in one dim
sion, if the lattice is spatially and temporally uncorrelate
i.e., chaotic and not synchronized, one can see that the la
large numbers is applicable. The reason for this is tha
such a situation the correlation decays exponentially and
sites beyond the correlation length are effectively indep
dent. This is why dimension and similar quantities are ext
sive in this case@17#. We expect the correlation length o
intermediately coupled CML’s not to change if one fixes t
number of neighborsB. We simulated Eq.~4! for B5500, at
which the variance in the mean field of globally coupl
maps is near the asymptotic value@1#; Sinhaet al. @2# used
the same value ofB in their simulations. However, we see n
signs of saturation in our simulations of intermediate-ran
coupling. This is expected if correlation length a function
B alone. Figure 2~a! shows that variances2 as a function of
N. The law of large numbers clearly holds.

Given that the deviations around mean field decay asN
in this scheme, one would expect that the contribution to
zeroth component in the power spectrum ofh(t) would keep
increasing at the cost of other components. This is beca
the zeroth component represents the mean. Figure~b!
shows the fraction of power in nonzero components a
function of N. We find that the total normalized power i
nonzero components of the power spectrum decreases
tinually as N increases. Thus, in the thermodynamic lim
the power spectrum tends to ad function in the zeroth com-
ponent as expected. One does not expect any long ra
order in one dimension with short-range interaction. T
structure observed by Sinhaet al. @2# in the power spectrum
disappears in the thermodynamic limit.

CML’s with power-law couplings can sometimes be e
pected to have behavior similar to CML’s with short-ran
couplings. Even a 1/r 2 interaction does not produce synchr
nization@6#. @A proof can be given with the formalism use
above andS i 51

N i 22cos(2pi/N)→Si51
N i22 for large N.# We

have checked the mean square deviation of the mean fie
a function of N for unsynchronized CML’s in which the
couplings decay asI i , j5r i j

2a/(2(k51
N/2 k2a) where r i , j
h
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5ui2ju if u i 2 j u,N/2 andr i , j5N2u i 2 j u if u i 2 j u.N/2 for
a51 and 2. Unfortunately, it is not possible to go to ve
large system sizes in this case since we did not find
technique to increase the speed of numerical simulatio
However, we found that the fluctuations do not decay asN
~but some anomalous power! when couplings decay as 1/r ,
and they do decay as 1/N when couplings decay as 1/r 2.
These results are shown in Fig. 3. It seems that the coupl
in which synchronization is possible also give rise to larg
scale coherences. This is reasonable since synchronizati
an extreme case of coherence.~If we assume that correlation

FIG. 2. Data for the map of Eq.~4! on a lattice ofN sites with
f (x)5121.99x2, B5500, ande50.1. ~a! The variance of the
mean field,s2, as a function ofN on a log scale.~b! Fraction of
power in nonzero components of the power spectrum,F, as a func-
tion of N on a semilog scale.

FIG. 3. The variance of the mean field,s2, as a function ofN on
a log scale for the coupling withI i , j5(1/r i j

a )/@2(k51
N/2 (1/ka)#,

f (x)5g3(x), g(x)512ax2, anda51.99. Strong chaos is chose
to avoid synchronization. The upper line shows data fora51, and
the lower line shows data fora52.
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in the chaotic case decay as fast as couplings, then a sy
whose couplings decay as 1/r 2 or faster would have finite
correlation length independent of system size. Thus the p
of system larger than the correlation length can be con
ered independent. This could be the reason for different
haviors at different values ofa.! A detailed analysis of such
systems is being pursued.

We would like to point out here that in 1D cellular au
tomata, one can rigorously formulate a local structure the
In this theory, it is possible to decompose the probabilities
blocks into that of subblocks due to the shift invariant nat
of evolution rules@18#. In CML’s, given their shift invariant
nature, a similar theory should be possible. However,
should note that such a rigorous decomposition in blocks
arbitrary size is not possible in higher dimensions, even
principle. According to Ref.@18# this is related to the unde
cidability of whether a plane can be tessellated with a giv
ev
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collection of polygons. In one dimension, if the correlatio
length is finite, blocks of size larger than the correlati
length should be effectively independent. Since the s
blocks determine the bigger block, nontrivial collective b
havior is not expected to emerge in one dimension for a la
system.

In short, intermediate-range coupling with fixedB is not
qualitatively different from nearest neighbor coupling in t
thermodynamic limit. Thus studies on intermediate-ran
coupling with fixedB are unlikely to yield any new under
standing. However, experimentally, the infinite lattice lim
is not realistic and for coupling ranges comparable to sys
size, such studies can be useful.
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of the paper. This work was supported in part by the N
tional Science Council of the Republic of China~Taiwan!
under Grant No. NSC 88-2112-M-001-011.
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